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A B S T R A C T

Polar marine regions are facing rapid changes induced by climate change, with consequences for local faunal
populations, but also for overall ecosystem functioning, goods and services. Yet given the complexity of polar
marine ecosystems, predicting the mode, direction and extent of these consequences remains challenging. Trait-
based approaches are increasingly adopted as a tool by which to explore changes in functioning, but trait in-
formation is largely absent for the high latitudes. Some understanding of trait–function relationships can be
gathered from studies at lower latitudes, but given the uniqueness of polar ecosystems it is questionable whether
these relationships can be directly transferred. Here we discuss the challenges of using trait-based approaches in
polar regions and present a roadmap of how to overcome them by following six interlinked steps: (1) forming an
active, international research network, (2) standardizing terminology and methodology, (3) building and
crosslinking trait databases, (4) conducting coordinated trait-function experiments, (5) implementing traits into
models, and finally, (6) providing advice to management and stakeholders. The application of trait-based ap-
proaches in addition to traditional species-based methods will enable us to assess the effects of rapid ongoing
changes on the functioning of marine polar ecosystems. Implementing our roadmap will make these approaches
more easily accessible to a broad community of users and consequently aid understanding of the future polar
oceans.

1. Introduction

Climate change is a serious threat to humanity, in particular the
rapid changes observed in polar regions have global implications

(Hassol, 2005; IPCC, 2014; Sunday et al., 2015). Although we have
gained insights into how certain polar marine species, taxon groups and
local assemblages were affected by climate change (Gutt et al., 2013;
Kortsch et al., 2015; Matishov et al., 2012; Montes-Hugo et al., 2009;
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Nahrgang et al., 2014; Sahade et al., 2015), we have considerably less
understanding of how certain ecosystem processes, let alone overall
ecosystem functioning (see Table 1 – Glossary for definitions) will be
affected. A major reason for this uncertainty is that we lack knowledge
of community structure-function relationships that could be related to
(changing) environmental parameters in large-scale approaches (Worm
et al., 2006). Animals, plants and microbes shape ecosystem functions
via their collective life activities or traits; accordingly, we infer that
stressor-induced changes in community structure will alter certain
functions (Naeem et al., 1999). Today, polar marine communities are
facing drastic changes. The Arctic is warming at twice the rate of the
global average (Pachauri et al., 2014), most visibly reflected in the
drastic decrease of Arctic sea ice thickness and extent within the last

decades (Comiso, 2016) (Fig. 1a). The Antarctic shows a different trend
and stronger natural variability than the Arctic (Turner and Overland,
2009). This variability is reflected in the long-term decline of sea ice in
the Bellingshausen Sea, and in the increase of sea ice in the adjacent
Ross Sea (Stammerjohn et al., 2008). In austral spring 2016, overall
Antarctic sea ice decreased at a record rate, leading to a decrease of sea
ice 28% greater than the mean (Turner et al., 2017). Sea ice is the
central structuring force in polar ecosystems: it serves as a habitat for a
variety of taxa (Loeb et al., 1997; Moore and Huntington, 2008), while
its seasonal growth and melt rhythms control the stratification of the
water column and light availability, and thus the availability of nu-
trients and the onset of the productive season (Leu et al., 2015, 2011;
Turner et al., 2009). Consequently, drastic changes in sea ice affect the

Table 1

Glossary in alphabetic order. If terms within the explanation occur also as entries themselves, they are given in italics.

Biological trait A well-defined, measurable property of organisms, usually at the individual level and used comparatively across species (McGill et al., 2006;
Reiss et al., 2009; Violle et al., 2007). Examples of frequently used biological traits in the marine realm are body size, mobility, and feeding
habit

Biological Trait Analysis (BTA) An approach that considers a range of biological traits of organisms to assess how functioning varies between assemblages (Bremner et al., 2003).
Also, it may explore potential relationships between community biology and environmental characteristics, including human activities
(Beauchard et al., 2017)

Ecosystem function Comprises the stocks and fluxes of energy and materials in the system, and the relative stability over time (Paterson et al., 2012). Examples are
primary production, nutrient cycling, or sediment stability. Absolute separation of ecosystem functions and ecosystem processes is not always
possible, and in literature terms are often used synonymously (Paterson et al., 2012; Reiss et al., 2009).

Ecosystem functioning The joint effects of all processes that sustain an ecosystem (Reiss et al., 2009)
Ecosystem goods and services Ecosystem services are the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil

human life. They maintain biodiversity and the production of ecosystems goods such as seafood, forage, timber, biomass fuels, natural fiber, and
many pharmaceuticals, industrial products, and their precursors (Daily, 1997)

Ecosystem process Mostly small-scale transformation and translocation of energy and material within the ecosystem, due to physical, chemical or biological action;
in sum regulating the observed level of ecosystem functions (Paterson et al., 2012). Examples are electron transport pathways of photosynthesis
or shell formation in bivalves

Effect traits Those functional traits that determine how an organism affects ecosystem properties (Hooper et al., 2005; Lavorel and Garnier, 2002). An
example are traits related to bioturbation, which affect sediment biogeochemistry

Functional trait Component of an organism’s phenotype that influences ecosystem processes and its response to environmental factors (Naeem and Wright, 2003;
Petchey and Gaston, 2006)

Functional diversity The range and value of those traits that influence ecosystem functioning (Tilman, 2001). Functional diversity indices usually describe two broad
aspects of functional diversity: (1) how much of the functional niche space is filled by the existing species (functional richness) and (2) how this
space is filled (functional evenness, functional divergence/variance) (Schleuter et al., 2010; Villéger et al., 2008)

Fuzzy coding A coding procedure allowing organisms to exhibit trait categories to different degrees, to reflect its biology, or our uncertainty of its biology
(Chevenet et al., 1994; Frid et al., 2008)

Response traits Those functional traits that determine how organisms respond to a disturbance or change in the environment (Hooper et al., 2005). An example
is life span: in highly disturbed environments species with short life span and high turnover prevail

Trait-based approach Here used for any framework in community ecology that considers organism traits rather than individual species, including studies that focus
only on a single trait

Trait categories Traits can be subdivided into categories (often also called modalities). For example, the trait ‘feeding habit’ can be split up into the categories
deposit feeder, filter/suspension feeder, opportunist/scavenger and predator (Bremner et al., 2006b)

Fig. 1. Arctic and Antarctic study region and sea ice extent. Mean Arctic sea ice extent of September 2017 compared to the September median of 1981–2010 (a) and
mean Antarctic sea ice extent of February 2017 compared to the February mean of 1981–2010 (b). Shapefiles by NSIDC (http://nsidc.org/data/; Fetterer et al. 2002).
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entire marine ecosystem, from surface waters down to the deep-sea
floor (Gutt, 2001; Gutt et al., 2013; Slagstad et al., 2015). In addition,
warmer water masses have been directly linked to range shifts in the
distribution of some polar species and the poleward expansion of boreal
species and communities (Cheung et al., 2009; Frainer et al., 2017;
Mueter and Litzow, 2008; Smith et al., 2012), the latter also influenced
by the increased human activity in the polar regions (Aronson et al.,
2011; Renaud et al., 2015).

Traits – here defined as the life history, morphological, physiolo-
gical and behavioral characteristics of species – provide a link between
species and multiple ecosystem-level functions, such as oxygen, nu-
trient and energy fluxes (Fig. 2). Since species influence these functions
via their collective traits (Naeem and Wright, 2003), such traits are
termed effect traits (Hooper et al., 2005; Suding et al., 2008) (Table 1).
When the relationship of traits and functions is soundly assessed we can
use the collective trait pattern of a community in combination with
community abundance or biomass to indicate ecosystem functioning
(Bremner et al., 2006b) Fig. 2). This approach benefits studies on large
spatial scales, as measuring functions at those scales is inherently dif-
ficult, and in many cases impossible. Another advantage of trait-based
approaches is that early responses to changes are visible in the func-
tional structure rather than in the taxonomic structure of a community
(Gagic et al., 2015; Mouillot et al., 2013). Recent use in terrestrial
ecosystems has demonstrated that trait-based methods enable gen-
eralizations of the trait diversity-functioning relationship within and
between ecosystems, and aid prediction of the functional consequences
of biodiversity loss (Gross et al., 2017). Accordingly, those traits
showing a response to a disturbance are termed response traits (Hooper
et al., 2005) (Table 1). These traits are highly relevant in assessing
species thresholds and the resilience of ecosystems to change (Gutt
et al., 2017) and consequently are important indicators for manage-
ment and conservation (Bremner, 2008). Uses with immediate appli-
cation potential for polar regions include identifying regions that are
most vulnerable to changes (Diaz et al., 2013; Mouillot et al., 2013;
Suding et al., 2008), detecting early conservation outcomes in marine
protected areas (Coleman et al., 2015), and identifying functional
hotspots (Stuart-Smith et al., 2013). Given their high invasion potential
(Cheung et al., 2009), polar areas would also benefit from using trait-
based approaches to assess the response of ecosystems to species in-
vasions as done in European Seas (Hewitt et al., 2016; Weigel et al.,
2016), or to assess the potential of particular species to become invasive
(Cardeccia et al., 2015). Similarly, Suding et al.’s (2008) and Hewitt
et al.’s (2016) application of trait-based approaches to estimate climate

change effects on ecosystem functions is highly relevant to polar re-
gions.

The origin of trait-based approaches lies in freshwater (Southwood,
1977; Townsend and Hildrew, 1994) and terrestrial ecology (McIntyre
et al., 1995; Olff et al., 1994). They are, however, used with increasing
frequency in marine systems: a survey of 233 peer-reviewed studies on
marine communities (S1) showed that only 5% where published prior
to 2000, and after 2010 the number of publications showed an almost
threefold increase despite great challenges in sampling, observation and
manipulation of natural assemblages in marine ecosystems (Beauchard
et al., 2017). These obstacles are particularly prevalent in polar marine
systems, likely contributing to the sparsity of studies, which consider
trait-function relationships in these regions. In the Arctic Ocean, only
one study from the Canadian Arctic measures a function (benthic re-
mineralization) and relates it to the functional diversity of local benthic
communities (Link et al., 2013). A small number of further studies –

mostly benthic and very recent – harness trait-based approaches (see
overview in Fig. 3) to indicate ecosystem functions (Rand et al., 2017),
explore the functional responses to human impacts and climate change
(Frainer et al., 2017; Krumhansl et al., 2016; Wiedmann et al., 2014b),
or relate functional observations to environmental parameters and
gradients (Cochrane et al., 2012; Kokarev et al., 2017; Meyer et al.,
2015). Functional diversity was estimated for Arctic zooplankton
(Pomerleau et al., 2015), fish (Wiedmann et al., 2014a), and benthic
meiofauna (Hasemann and Soltwedel, 2011). A majority of studies
analyze the correlation of only one or two biological traits – chiefly
feeding type, body size, and/or mobility – to certain environmental
parameters (e.g. Grzelak et al., 2016; Pisareva et al., 2015), or use them
to indicate community vulnerability (Jørgensen et al., 2015) or func-
tional redundancy (Włodarska-Kowalczuk et al., 2012). From the
Southern Ocean we are aware of four studies that included at least two
traits each (Jacob et al., 2011; Potthoff et al., 2006; Smale, 2008;
Valdivia et al., 2015), while a further study investigated the correlation
of one trait (feeding type) and sediment parameters (Liu et al., 2015).

To briefly summarize the current status of trait-based approaches in
the marine realm, there is a clear dominance of studies on benthic in-
vertebrates and fish over other ecosystem components (see Table 2; S1).
This trend is visible also in trait studies from polar regions, which ad-
ditionally show a clear majority of Arctic over Southern Ocean studies.
Applied methods are mostly of correlative and indicative nature, while
studies that estimate functions and trait-function relationships – thus
providing a foundation for the correlative approaches – are scarce. As
such, we are currently limited in our ability to answer ecological

Fig. 2. Trait-function relationships based on the example of benthic invertebrates. This scheme does not claim completeness, but includes the traits and functions the
authors consider most relevant in terms of benthic ecosystem functioning. See S1 for literature sources.
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questions which are of ever increasing relevance to ecosystem scientists
and managers (IASC, 2016; Kennicutt et al., 2015). These include:

• How do climate induced changes affect polar marine communities,
ecosystem functions, goods and services today and under future
scenarios?

• How functionally redundant, and resistant to stressor effects (espe-
cially those resulting from climate change, biological invasions, and
anthropogenic activity) are marine communities in polar regions?

• Which polar marine regions, ecosystems and functions are most
threatened or prone to change?

Here we discuss the main challenges of the application of trait-based
approaches in polar regions and provide a roadmap to overcome the
current obstacles (Fig. 4). As the present paper resulted from the Arctic

Trait Workshop (University of Vienna, December 2016) that was at-
tended predominantly by benthic ecologists, we use Arctic benthic
ecosystems as model systems by which to approach many of the specific
issues we discuss. Nonetheless, the presented roadmap underpins a
holistic ecosystem approach, and is applicable to all (polar) marine
ecosystem components.

2. Challenges

2.1. Knowledge gaps related to logistical challenges of sampling polar

regions

The two polar marine ecosystems of our planet are – despite being
both shaped by low temperatures and strong seasonality in light regimes
– highly dissimilar. The Arctic Ocean comprises about half mostly
shallow, continental shelves, and half slopes, extensive deep sea plains
and steep deep-sea ridges (Jakobsson et al., 2012) (Fig. 1a). Due to its
proximity to densely populated northern landmasses, areas of the Arctic
have been explored for hundreds of years. The Southern Ocean com-
prises mostly narrow shelves around Antarctica that are submerged
deeply by the burden of the inland ice masses, and that drop off steeply
towards the basins of the Atlantic, Pacific, and Indian Ocean (Fig. 1b).
The exploration of the Southern Ocean started much later in history due
to the harsh conditions and remote location, far off the nearest human
populations (Howkins, 2016). Technological advancement and im-
proved accessibility (in the Arctic, due to declining sea ice cover) have

facilitated larger sampling campaigns in recent decades, and global ef-
forts like the Census of Marine Life (McIntyre, 2010) that included an
Arctic and Antarctic census improved our knowledge of polar biodi-
versity. Most campaigns have, however, focused on shallow, easy to
reach and seasonally ice-free shelf ecosystems (Deal et al., 2014;
Sakshaug et al., 2009) including areas of commercial interest. For the
Antarctic, the regions with longest history of scientific exploration are
the islands of the Scotia Sea, the West Antarctic Peninsula, the Eastern
Weddell Sea, and the Ross Sea (Griffiths, 2010; Hamel and Mercier,
1995). Given the high cost of polar exploration, in several other regions –
such as the Arctic basins, and Antarctic regions including the Amundsen
Sea and the shelves covered by floating ice shelves – our knowledge on
species biology and, especially, ecology remains limited (De Broyer
et al., 2014; Griffiths, 2010; Kȩdra et al., 2015). Systematic monitoring
programs provide ongoing quantitative time-series in certain areas,
however gaps in pre-impact baselines hinder assessment of the magni-
tude and speed of change in large regions (Wassmann et al., 2011).

2.2. Lack of trait information

Apart from the general lack of biological information from some
polar regions, huge knowledge gaps exist when it comes to ecological
characteristics or traits of polar species, which form the basic input to
all types of trait-based approaches (Fig. 3, Beauchard et al., 2017). Even
information about fundamental traits is sometimes hard to find, such as
body size, despite authors acknowledging it to be among the most
important and interlinked traits (Costello et al., 2015; Norkko et al.,
2013). This lack of accessible trait information is not a problem re-
stricted to the polar regions. For example, a study quantifying data
availability for the demersal fauna of the United Kingdom reveals that
information about eight fundamental traits (body size, diet, feeding
method, reproductive timing, fecundity, larval dispersal, adult dis-
persal, longevity) was available for only 9% of the benthic community
in that study (Tyler et al., 2012). The authors noted that body size was
the best documented trait (data available for 80% of species), while
data on fecundity was especially scarce (data available for only 19% of
species). Publications that provide such ecological information are
usually often cited clearly stating their high value to the scientific
community. A notable example is the study of polychaete feeding guilds
on family level by Fauchald and Jumars (1979) which is currently
cited>1300 times (Web of Science, accessed December 4, 2017).

Table 2

Traits used in publications based on a literature survey of 233 marine trait studies from 1979 to 2018. The 323 (standardized) traits found in literature where grouped
into 20 topical clusters for simplification (see S1 and S2 for details). The number of studies per ecosystem component (animals in blue, plants and phytoplankton
grey) is given in brackets. Trait clusters that occurred in studies from all marine ecosystem components are indicated by white cell filling. The highest number of
studies per ecosystem component is emphasized in bold, indicating the most frequently used trait cluster. The ecosystem component “Other” combines studies on
mammals, birds, reptiles, biofilm and fouling communities.
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2.3. Paucity of established trait-function relationships

A basic requirement when using traits to indicate ecosystem func-
tioning is sound knowledge of trait-function relationships. To date ex-
periments that quantitatively explore specific trait-function relation-
ships in the marine realm are quite rare (but see Lohrer et al., 2005;
Michaud et al., 2006, 2005; Norkko et al., 2013; Thrush et al., 2017),
and even less data are available to build correlative approaches in polar
marine regions (Link et al., 2013). Indeed, those experimental studies
which do exist have often only limited explanatory power as they are:
1) conducted in the lab or on small scales the field, 2) include only a
few species, and/or 3) usually focus only on a single ecosystem function
(Stachowicz et al., 2007). By contrast, real world ecosystems are species
rich, and species usually contribute to more than one function, while
the overall ecosystem functioning is sustained by multiple processes
across multiple spatial and temporal scales (Reiss et al., 2009). This
complexity is emphasized in a recent study by Thrush et al. (2017) that
nested holistic Biodiversity-Ecosystem functioning (B-EF) experiments
into a natural landscape (an extensive intertidal flat). Their results
clearly showed that the community-function relationship was not al-
ways linear or stable, but could change with changes in either the
ecological landscape or the environmental drivers.

2.4. Are polar traits and processes different?

It is unclear whether trait-function relationships determined at
lower latitudes are valid also at high latitudes. Polar ecosystems are
unique in several respects (e.g. very low temperatures, strong season-
ality in light and productivity), and polar species are often highly
adapted to life in small physiological ranges and extreme environ-
mental conditions (Peck et al., 2004). Thus, their response to stressors
like temperature increase may strongly differ in comparison to their
relatives in temperate regions. For example, Sainte-Marie (1991) and
Węsławski and Legeżyńska (2002) suggested gammaridean amphipods
might express intraspecific variability in reproductive traits (e.g.
number of broods, life-span) along latitudinal gradients. Decreasing
growth rates have been documented for a single sea urchin species with
decreasing temperature along a latitudinal gradient (64–77° N) in
Greenland (Blicher et al., 2007). For widely distributed species with
ranges extending into subarctic/subantarctic or even temperate regions,
trait information mostly originates from those lower latitudes. Trait
approaches at lower latitudes commonly assume that traits of the same
species stay constant across a wider geographical range, enabling large
scale assessments or comparison of community functioning among
different regions (Bernhardt-Römermann et al., 2011; Bolam and
Eggleton, 2014; Bremner et al., 2006b). However, there is evidence that
species in polar regions might have developed certain adaptations that
influence their trait expression, including slow growth, high longevity,
high lipid content or production of anti-freeze agents (Margesin and
Schinner, 1999; Pörtner and Playle, 1998). Such considerations advise
against the use of information from lower latitude trait literature and
further restrict the pool of available trait data.

2.5. Choice of traits and terminology

Table 2 shows the most commonly used traits per ecosystem com-
ponent in the marine realm, based on a literature survey (S1, S2). The
number of traits and trait categories (Table 1) used in marine studies
varies from 5 or less (e.g. (de Juan et al., 2007) to> 50 (Doxa et al.,
2016). While a number of traits are common to many trait-based studies
and across ecosystem components (see Table 2), the diversity of lan-
guage which surrounds them grows as trait-based studies are adopted
more widely. Across literature, traits are named and defined in a myriad
of contrasting ways that act to lessen their applicability and ease of use

(Kremer et al., 2017; Violle et al., 2007) (S1). Non-standardized and
even contradictory trait definitions prevent authors from readily com-
paring their findings (Costello et al., 2015). Alternatively, imprecise
trait definitions or classifications could mean information is mishandled
and wrongly incorporated. Issues are likely to be particularly
complex during broad-scale studies investigating ecosystem manage-
ment strategies or consequences of change. For example, traits such as
‘body size’ are likely to be interpreted differently when not clearly
defined depending on the preconceptions of the author, and the mor-
phology of the species in question. Practices may work well within a
scientific field or research group, or where the appropriate terminology
is apparent for a given taxa, but become ‘lost in translation’
when considered across multiple data sources. This variety limits the
potential to generalize findings across studies or compare patterns
across spatial and temporal scales (Carmona et al., 2016; Costello et al.,
2015).

2.6. Past and current climate changes

Studies are needed that directly relate environmental change to
responses in ecosystem functions in polar regions, as has previously
been explored in terrestrial (Diaz and Cabido, 1997; Lavorel and
Garnier, 2002) and freshwater ecosystems (Bonada et al., 2007; Maasri
and Gelhaus, 2012). A number of polar studies have succeeded in
documenting climate change effects on certain species, taxon groups,
local assemblages (Gutt et al., 2013; Kortsch et al., 2015, 2012;
Matishov et al., 2012; Sahade et al., 2015) or larger-scale community
properties like biodiversity (Michel et al., 2012; Wesławski et al.,
2011). So far, only one recent study on Arctic fish tackled how these
changes affect the communities’ trait pattern and consequently eco-
system function as a whole (Frainer et al., 2017). Frainer et al. (2017)
detected that the recent warming period in the Barents Sea triggered a
rapid shift from an Arctic fish community characterized by small-sized
bottom-dwelling benthivores, towards a boreal fish community char-
acterized by the traits large body size, longer lifespan and piscivory.
This phenomenon – also known as the borealization of Arctic fish
communities (Fossheim et al., 2015) – has the potential to reconfigure
Arctic food webs and affect ecosystem functioning in the region. Given
this scarcity of studies, there is currently not a sufficient basis from
which generalizations can be drawn. The same holds true for past
ecosystem changes: few studies from lower latitudes use fossil trait data
to estimate how past climate change affected ecosystem functions (and
ecosystem services) in order to contextualize contemporary observa-
tions (e.g. Caswell and Frid, 2013; Frid and Caswell, 2016), and even
fewer focus on the past and present of the polar regions in this context.
Vemeij and Roopnarine (2008) refer to trans-Arctic invasions that oc-
curred during the warm mid-Pliocene epoch and predict a resumed
spreading from the Pacific through the Bering Strait into a warmer
Arctic Ocean and eventually into the temperate North Atlantic. The
adding of Pacific-derived fast-growing and large bodied mollusk species
to the Arctic and North Atlantic species pool might affect the regional
food webs and ecosystem functions (Vermeij, 1991; Vermeij and
Roopnarine, 2008). Bonn et al. (1998) used biogenic opal as proxy for
paleo-productivity and observed a glacial/interglacial pattern with high
productivity during peak warm stages with reduced sea ice coverage
back to 400 ka.

3. Roadmap

Here we present a roadmap consisting of six steps to address the
identified challenges. The aim is to facilitate the successful application
of trait-based approaches on various spatial and temporal scales, and to
assess trait and functional patterns in order to understand current and
predict future ecosystem functioning in rapidly changing polar marine
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systems. Recommendations regarding each step of the roadmap are
summarized in Fig. 4.

Step 1: International network

Much knowledge of species traits is unavailable in the published
literature, and is instead dispersed among individual scientists’ personal
observations and unpublished notes. The formation of a comprehensive,
international network of experts (biologists/ecologists from all specia-
lizations, ocean surface to seafloor, taxonomists, physiologists, museum
curators, technicians) is thus indispensable to integrating expert
knowledge and to covering the entire polar regions. Any such network
should reach internationally. We suggest an editorial board be formed
that is interlinked with the World Register of Marine Species platform
WoRMS (WoRMS Editorial Board, 2017), today’s largest standardized
and expert-curated marine species inventory (Horton et al., 2017;
Vandepitte et al., 2018). Such a board is necessary to organize the
network, identify traits experts for particular taxonomic groups, re-
gions, or methods, and document where relevant trait sources such as
voucher collections or video material are deposited. Recommendations
on standardized protocols for field and laboratory work could be made
available for download. The network could also promote the integra-
tion of traits data into ongoing Arctic and Antarctic monitoring pro-
grams (see also Step 2), including the Circumpolar Biodiversity Mon-
itoring Program (CBMP, http://www.caff.is/monitoring) in the Arctic
and the Commission for the Conservation of Antarctic Marine Living
Resources (CCAMLR) Ecosystem Monitoring Program (CEMP)
(Agnew, 1997; https://www.ccamlr.org/en/science/ccamlr-ecosystem-
monitoring-program-cemp) in the Antarctic.

Step 2: Trait terminology and methodology

Application of trait-based approaches in the polar regions is a re-
latively recent development (S1). Though a drawback in many ways,
this offers an opportunity to promote standardized trait definitions and
best practices before the plethora of approaches seen in other regions
also inundates the polar regions. While acknowledging that approaches
are case specific, unification of the following aspects will allow en-
hanced comparability and extrapolation of results.

2.1. Choice of traits and terminology

While the choice of traits is driven by a given research question, a
comprehensive list of traits and their categories needs to be developed
for polar regions using standardized terminology. In the currently de-
veloped traits data base linked to WoRMS, Costello et al. (2015) have
proposed a prioritized list of 10 traits (taxonomic identity, environ-
ment, geography, depth, substratum, mobility, skeleton, diet, body size
and reproduction), which resulted from a study on the availability and
use of traits, both in literature and existing database, and consultation
of experts. Here, we focus solely on biological traits, i.e. such that
comprise morphological, physiological, life history and behavioral
traits of organisms. For taxonomic traits, we refer to specific platforms
like the World Register of Marine Species (WoRMS Editorial Board,
2017; http://www.marinespecies.org/), Integrated Taxonomic In-
formation System (ITIS; www.itis.gov), and for biogeographic in-
formation to Global Biodiversity Information System (GBIF; http://
www.gbif.org/) or Ocean Biogeographic Information System (OBIS;
http://www.iobis.org). Within WoRMS, registration of trait data re-
quires that one should easily be able to apply a trait to any given taxon
(Costello et al., 2015). More specific research questions however may
require the use of additional taxon or ecosystem specific traits. Clarity
and standardization of trait terminology should be a foremost priority,
in order to facilitate meta-analysis or comparison of results. Successful
communication platforms should be developed to ensure this

standardization process. An example of how such a platform can be
organized is given in Costello et al. (2015).

2.2. Sources of trait information

A diversified, holistic approach is appropriate when it comes to
compiling traits information. Many biological traits can be readily as-
sessed during sampling. These include morphological traits, e.g. body
size/length/weight and body form. In situ imaging and diver-based
observations may identify some behavioral traits (e.g. sociability, ac-
tivity, environmental position), as well as feeding and movement traits
(Balazy et al., 2014; Hewitt et al., 2014) (Supplementary data). Other
traits can be derived from biochemical analysis. Traits defining trophic
roles can be assessed from stable isotopes (δ15N, δ13C), fatty acids and
other chemical markers (e.g. Fry, 2006; Kelly and Scheibling, 2012).
Traits related to energy-storage can be derived from lipid and caloric
content analysis (Falk-Petersen et al., 2009). Radionuclides (210Pb,
234Th and other) have been used as particle tracers to assess sediment
reworking rates (bioturbation) by benthic organisms (Maire et al.,
2008). Stable isotopes can be also used to inform on the migratory
habits of pelagic fish (Trueman et al., 2012).

Museum or other voucher collections are of high value especially
when containing specimens that are rare or from remote polar regions.
Accordingly, a list of relevant collections together with the contact
details of responsible authorities/persons should be added to the joint
management system. It is noteworthy, however, that museum collec-
tions may be biased towards “exceptional” individuals (e.g. particularly
large specimens), and organisms preserved in ethanol and formalin
experience shrinkage or body deformations (Cunningham et al., 2000).
When physical samples are unavailable, the common approach to build
up a traits collection is by performing a literature survey of articles
relating to either individual traits or groups of traits of species or taxon
groups. Often trait information is recorded in grey literature not ac-
cessible to the general public, like internal reports, descriptions in
museum libraries, ship protocols or lab notes (Vanden Berghe et al.,
2009). Such grey literature should be added to a joint database man-
aged via the network (Step 1, Step 3).

Time- and cost-saving needs fueled the search for surrogate methods
in biodiversity assessments. In benthic studies for example, lowering
the taxonomic resolution of taxonomic identification to family level or
choosing a certain representative taxon gave similar results to those
obtained based on all taxa in detecting the effects of natural and an-
thropogenic disturbance on benthic diversity and distribution patterns
(Włodarska-Kowalczuk and Kędra 2007). The search for similar surro-
gate methods in trait and functional diversity assessment may be
needed for the>7000 known marine animal and plant species in the
Arctic (CAFF, 2013) and>8800 in the Antarctic (Griffiths, 2010) (e.g.
to provide cost-effective monitoring tools), but only after a thorough
assessment of the effect of lowering the functional resolution.

2.3. Trait data analysis

Trait-based approaches in the marine realm are diverse and range
from the assessment of ecological indices, such as various measures of
functional diversity (Laliberté and Legendre, 2010; Mason and
Mouillot, 2013; Petchey and Gaston, 2002; Schleuter et al., 2010) and
the development of ecological indicators (Beauchard et al., 2017), to
more complex methods, often summarized under the term biological
trait analysis (BTA) (Bremner et al., 2006b). A BTA enables scientists to
explore the relationship between species or community trait patterns
and environmental characteristics (or stressors) (Beauchard et al.,
2017) (Fig. 3). The choice of which trait-based method and subsequent
equation, multivariate statistic or model to use (see overview in Fig. 3)
depends very much on the respective research question and environ-
ment, and thus cannot be discussed here in detail (excellent overviews
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are given in Kleyer et al., 2012 and Beauchard et al., 2017). The re-
quired data structure underlying all methods however comprises the
construction of several data matrices, and here some standardizations
appear useful. The degree to which a species expresses a trait category
can be indicated in the ‘traits per species’ matrix (or Q table, Fig. 3) via
a coding procedure. The fuzzy coding procedure (Chevenet et al., 1994)
offers a pathway from descriptive words to a common code enabling
analysis of diverse kinds of biological information derived from a
variety of sources (e.g. samples, literature, personal observations).
Fuzzy codes found in the literature range from 0–3 (Bremner et al.,
2006b), 0–4 (Tillin et al., 2006), and 0–6 (Chevenet et al., 1994). We
promote the use of the 0–3 coding scheme as it is the most commonly
used, and provides a compromise between binary codes and many not
clearly delineated graduations. Including code matrices as supplements
to publications enables comparisons and aids the use of consistent
coding (Bremner et al., 2006b; Kokarev et al., 2017; Santoul et al.,
2005).

2.4. Sensitivity analyses

The analysis of how uncertainties in input data affect the output of a
mathematical model is a central aspect of any model evaluation. In
trait-based approaches on the other hand, a formalized sensitivity
analysis is not a standard procedure. Several authors do, however, point
out uncertainties potentially affecting the outcome of the respective
trait study and suggest ways of addressing this issue. This includes the
type and number of traits or functional groups used (Bremner et al.,
2006b; Guillemot et al., 2011; Thrush et al., 2017), the weighting of
traits (Elleouet et al., 2014), the number of traits not measured “on site”
(Borgy et al., 2017), and generally incomplete trait information
(Májeková et al., 2016; Tyler et al., 2012). Regarding the fuzzy coding
of traits, the degree of subjectivity of scientists and the consequent
potential differences of fuzzy codes is a concern that is not yet studied.
To get a first insight we conducted a small experiment among partici-
pants of the Arctic traits workshop (University of Vienna, December
2016). Participants coded 27 trait categories (belonging to six traits) of
three common Arctic benthic invertebrates (the bivalve Macoma cal-

carea, the brittle star Ophiura sarsii, and the amphipod Anonyx nugax),
the final matrices were compared. We found that 83% of the coding was
identical, while 17% were different in at least one category per trait. We
assume that the differences result from a combination of the fact that

most of the participants were new to the use of fuzzy codes, and partly
not experts for the chosen taxa. The exchange of trait information and
fuzzy codes via publications and databases along with explicit guide-
lines on how to code will improve the consensus (see Step 3).

Step 3: Trait databases

As traits are already being documented within several (not region
specific) databases [e.g. FishBase www.fishbase.org, polytraits
(Faulwetter et al., 2014), or the trait database for marine copepods
(Brun et al., 2017)] it is key to look for collaboration opportunities with
these initiatives, thereby avoiding duplication of effort. Accordingly, a
large number of traits in the WoRMS traits portal (http://www.
marinespecies.org/traits/index.php) are sourced from these databases
that are focused on certain taxonomic groups. The traits compilation
currently being tackled by the WoRMS Data Management Team and the
Editorial Board is grouped at higher taxonomic level as much as pos-
sible, thereby lessening the workload. The use of ‘generalistic’ traits,
here such that are applicable across ecosystem components (Table 2),
enables analyses across marine realms and large biogeographical scales.
This represents a potential for investigating mechanistic relationships
between ecological function and the physical environment. The use of
such traits also allows more holistic investigations of function that
encapsulate several ecological groups, such as invertebrates, fish and
mammals (something that has been seldom attempted in marine studies
to date). More specific traits – as may be desirable for polar taxa - can
be added. For example, the maximum sediment burrowing depth is
highly relevant for benthic (polar) ecosystem functions, but does not
apply to pelagic taxa. Under these circumstances these pelagic taxa
must not be excluded from analysis, but are merely scored a ‘0′ for that
respective trait, indicating that it is not expressed (see Step 2).

Several options exist regarding the way in which trait information is
stored in databases, specifically as text information or coded. The Arctic
Traits Database (Degen et al. unpublished; www.univie.ac.at/
arctictraits), a trait platform for Arctic benthic taxa, provides both
text and fuzzy codes by species for direct download and import into
relevant analysis software. The advantage of this approach is that re-
searchers who are less trained in fuzzy coding can also perform rapid
trait analyses. This goal is supported by the additional provision of
manuals and R-code. Also, detailed records of the information from
which the fuzzy codes were sourced are provided to ensure data

Fig. 3. Trait-based approaches use a set of up to three matrices: 1) the species per station matrix (L table) using presence/absence, abundance or biomass data of
species per sample/station, 2) the traits per species matrix (fuzzy coded or otherwise) (Q table), and 3) the environmental or stressor data matrix (R table). Out of 1)
and 2) the abundance or biomass weighted traits matrix can be constructed (LQ table). Common analysis tools used in trait studies are listed left (species level
approaches) and right (community level approaches) of the conceptual model. Species level approaches are performed on the separate L and Q, or L, Q, and R tables
and allow to gain information on species level, while community level approaches are performed on the LQ table; here the entire community is analyzed and findings
can no longer be traced back to single species. Double arrows indicate which matrices can get analyzed together (see Kleyer et al., 2012; Beauchard et al., 2017 for
methodical details).
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traceability and reproducibility, and potential revision of codes in the
event of new findings. In general, quality assurance for all data re-
positories should aspire to be of the same rigor as that of printed
publications (Costello and Berghe, 2006). A best practice example is the
Polytraits database (http://polytraits.lifewatchgreece.eu), where every
trait is referenced, often by directly quoting the exact literature passage
which has led to the coding of the information (Faulwetter et al., 2014).

In addition to trait information, a BTA requires presence/absence,
abundance, or biomass data by location, as well as environmental data.
Tools have already been developed through the EMODnet Biology
Project (http://www.emodnet-biology.eu/toolbox/), allowing to query
a selection of traits in combination with taxonomic and distribution
data (Costello et al., 2015).

Step 4: Trait-function relationships

In order to apply trait-based approaches to study ecosystem func-
tioning in the rapidly changing polar regions, it is crucial that sound
links between polar community traits and functions are established.
Substantial understanding of trait–function relationships could be
gathered from experimental approaches at lower latitudes (Lohrer
et al., 2005; Michaud et al., 2006, 2005; Norkko et al., 2013; Thrush
et al., 2017), but we must question whether these relationships can be
directly transferred to polar functions. We consequently recommend
performing a series of experimental and observational approaches in
contrasting ecosystems and several polar regions. Most naturally, ex-
perimental approaches in polar regions should be performed in well
studied regions (e.g. coastal shelf or fjords), and/or where regular
monitoring is carried out, and a large volume of species and environ-
mental information is already available. In the planning phase of ex-
periments, a critical step is to define the traits that are relevant for the
ecosystem function(s) of interest (Lepš et al., 2006). Given the un-
certainty of which traits are the appropriate ones to select, we follow
Lepš et al. (2006) and suggest treating the final choice as a hypothesis
that needs to be tested. Once trait-function relationships are identified,
the use of these particular traits in future studies and their inclusion in
trait databases should be encouraged. Not only the traits but also the
functions investigated need to be chosen a priori. While some traits are
intimately linked to particular functions (“hard” traits), others serve
only as indirect indicators (“soft” traits) (Petchey and Gaston, 2006).
Functional diversity should be included among the functional para-
meters (along single and multiple traits and functional groups), as it
explains variation in ecosystem functions (Cadotte et al., 2011). The use
of thresholds was successfully used to identify if overall functioning was
sustained in disturbance experiments (Gamfeldt et al., 2008; Thrush
et al., 2017, 2014). Below we list four types of studies that we suggest
be carried out in polar regions:

4.1. Lab and microcosm experiments

The relation and effect of single and multiple traits of polar species
to specific ecosystem functions can be assessed in laboratory or mi-
crocosm experiments. Communities (or subsets of these), selected based
on their expression of certain traits (see e.g. Braeckman et al., 2010;
Mermillod-Blondin et al., 2004; Norling et al., 2007), can be exposed to
different environmental conditions (e.g. varying temperatures, varying
food input). Fluctuations in functions are then measured in order to
provide important baseline information on trait-function relationships
and on potential thresholds of functions (Thrush et al., 2014). The
microcosm experiment by Braeckman et al. (2010), as one specific ex-
ample, showed a pronounced influence of the trait bioirrigation on
benthic respiration, nutrient release, and denitrification, compared to
the trait biodiffusion. The traits (and the species expressing them) that
explain most of the effects in lab and microcosm studies should be
clearly identified so they can be further analyzed, manipulated, and
quantified in field studies.

4.2. Field experiments

While most challenging, field experiments offer important trait-
function relationships previously identified in lab experiments to be
analyzed under real-world conditions. Complex community interactions
resulting in complementarity (i.e. when a mixture of species outper-
forms all monocultures) necessitate multiple aspects of the total com-
munity response (function) to be considered simultaneously (multi-
functionality) or integrated into a multivariate index of ecosystem
performance (Gross et al., 2017; Stachowicz et al., 2007). As an ex-
ample, Thrush et al. (2014) manipulated light, nutrient concentrations
and species densities in a coastal sandflat (Manukau Harbour, New
Zealand) and detected a changed interaction network between bio-
geochemical fluxes, productivity, and macrofauna, once potential
thresholds were crossed. Coordinated experiments on different com-
munity components could be performed in different regions of the
Arctic to provide the basis for a ‘functional atlas’. For example, func-
tional traits response to experimentally disturbed seafloor on different
spatial scales can provide insight into the recovery processes of com-
munities and associated functions exposed to various stressors and
along stressor gradients (Lohrer et al., 2015, 2010; Snelgrove et al.,
2014). We support the recommendation by Gamfeldt et al. (2015) that
future studies should explicitly consider also manipulations of species
density in order to disentangle density-dependent population processes
and diversity effects.

4.3. Observational studies

Observational studies are empirical and do not involve manipulative
experimentation (Thrush and Lohrer, 2012). Examples are descriptions
of trait patterns in space and time, correlative studies of traits and
functions, or broad-scale hypothesis tests of patterns and relationships
(all part of approaches shown in Fig. 3) which may result from ob-
servational field studies designed for the question or from data mining.
The advantage of such studies is that they can – contrary to field ex-
periments – rather easily be performed on large spatial scales, given the
ecological information is available. A disadvantage, however, is that the
conclusions drawn are based on statistical correlations and not caus-
ality, thus underlying mechanisms might remain unknown. We,
therefor, recommend to perform observational studies including those
significant traits and functional groups that were previously identified
in field and lab experiments from polar regions, to validate the out-
comes of the experiments on a larger scale and, in turn, to generate new
hypotheses and trait-function relationships.

4.4. Integrative approaches

Although a generally positive effect of higher (functional) diversity
on ecosystem functioning is assumed (Hooper et al., 2005; Stachowicz
et al., 2007), experimental findings are often contradictory and the
relevance and generality of many experimentally determined B-EF re-
lationships are questioned. We assume that the same will hold true for
the outcome of trait-function experiments in polar regions (see Link
et al., 2013). Accordingly, Srivastava and Vellend (2005) highlight the
need for rigorous and integrative science if general principles are to be
found. Following Thrush and Lohrer (2012), integration can for ex-
ample be achieved by testing predictions based on theory or small-scale
experiments with broad-scale observational studies. Regarding our
topic this suggests a meta-analysis of field and lab experiments from
polar regions (and lower latitudes), the identification of the significant
trait-function relationships, and a correlative study of these traits and
functions on larger, up to pan-Arctic scales.

Step 5: Modelling

Given the scarcity of trait-based research in polar regions, modelling
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approaches that incorporate multiple traits are equally rare. A pre-
requisite to large-scale modelling studies are data of sufficient geo-
graphical coverage, which are extremely difficult to obtain in many
polar regions, as well as trait information on largely unknown taxo-
nomic units. Access to sufficient data would enable the application of
species distribution models (SDM), which are commonly used tools to
study the distribution of species and support conservation measures
(Guisan et al., 2013; Reiss et al., 2015; Wittmann et al., 2016). Two
different frameworks exist to model species distribution patterns and
take into account the traits of species during analysis, i.e. 4th-corner
models and joint SDM (Brown et al., 2014; Pollock et al., 2012; Warton
et al., 2015). The advanced model-based approach to the fourth-corner
problem suggested by Brown et al. (2014) allows to develop a pre-
dictive model for species abundance, as a response to traits and en-
vironmental variables. Joint SDM are model-based hierarchical (Baye-
sian) approaches that assess the strength and direction of trait-
environment relationships, allow model-selection procedures, and fa-
cilitate prediction to new scenarios while propagating data uncertainty
(Ovaskainen et al., 2017; Warton et al., 2015). For example, it would be
possible to assess which traits are most associated with particular en-
vironments and determine their fate if these environments decline or
even disappear. In their study on geographic range shifts in an ocean-
warming hotspot Sunday et al. (2015) used multi-model averaging of
mixed-effects linear models (GLMM) with maximum likelihood esti-
mation to test the effect of species traits on shifts in poleward range
boundaries. Their study showed that including traits more than doubled
the variation explained than if climate velocity alone was used as
predictor. GLMMs were also used by Lefcheck and Duffy (2015) and
showed that functional diversity predicted ecosystem functioning better
than species richness. Predictive models can be used to assess ecosystem
functioning in future scenarios, e.g. when traits and functions are in-
cluded into ecosystem models (Queirós et al., 2015b). Another relevant
method are generalized additive models (GAM), which have the ad-
vantage of allowing the assessment of non-linear relationships without
fitting arbitrarily selected functions (Valdivia et al., 2015; Wood, 2006).
Valdivia et al. (2015) used GAMs to test for an effect of environmental
gradients (distance to glacier and water depth) on the functional rich-
ness of a subtidal community in the Western Antarctic peninsula. Gross
et al. (2017) promote a new modelling approach to assess trait dis-
tributions on global or at between-ecosystem scales, i.e. models that
include skewness-kurtosis of trait-abundance distributions. These
models have a higher predictive power of multifunctionality, as they
enable generalizations across ecosystems and prediction of the func-
tional effect of biodiversity loss. However, although the prediction of
multifunctionality would be of highest interest in the polar regions, to
our knowledge these approaches have not been applied there yet, nor in
the marine realm in general.

Size is often regarded as a ‘master’ or ‘key’ trait of an organism as it
may determine its functioning in terms of physiology, trophic strate-
gies, life-histories and interactions with abiotic and biotic elements of
the ecosystem (Andersen et al., 2016; Brose et al., 2016). At the com-
munity level, size spectrum models (based on size as a basic descriptor
of community components, ignoring species identity or other traits
characteristics) have been employed, for example to estimate consumer
biomass, productivity or predict the changes in community structure
through time (Blanchard et al., 2017; Brose et al., 2016). In the Arctic,
size spectra have been described for pelagic (Basedow et al., 2010;
Forest et al., 2012; Trudnowska et al., 2014) and benthic communities
(Górska and Włodarska-Kowalczuk, 2017). Recently, a need to include
additional functional traits into size-based ecosystem models has been
raised, especially in systems where not all processes are size-based (like
the energy flow through the detritus-based food webs in benthos,
Blanchard et al. 2017). For example, a study assessing the number of
dimensions (trait-axes) that determine whether individuals of different
species interact (trophically, antagonistically, or mutualistically) found
that models accounting for only a small number of traits already

dramatically improve understanding of the structure of ecological
networks (Eklöf et al., 2013).

Step 6: Management and conservation

One of the motivations for applying trait-based approaches in the
rapidly changing polar regions is that new insight and information are
needed to advise management and conservation efforts (Aarnio et al.,
2011; Bremner, 2008; Doxa et al., 2016). Consequently, traits are now
included among those “ecosystem Essential Ocean Variables” (eEOVs)
recommended to address the dynamics and change in Southern Ocean
ecosystems (Constable et al., 2016). In the Arctic, currently eleven
Ecologically and Biologically Significant Areas (EBSAs) are defined
after seven criteria: 1) uniqueness or rarity, 2) special importance for
life history stages of species, 3) importance for threatened, endangered
or declining species and/or habitats, 4) vulnerability, fragility, sensi-
tivity, or slow recovery, 5) biological productivity, 6) biological di-
versity, and 7) naturalness (CBD, 2014). Recent studies have shown that
trait approaches provide new means to define these marine areas of
interest, as they can identify functional hotspots and vulnerable regions
(Stuart-Smith et al., 2013) and assist in the boundary setting of MPAs
(Bremner et al., 2006a; Frid et al., 2008). BTAs were successfully ap-
plied to assist in the formulation of conservation objectives, e.g. by
testing fisheries effects on ecosystem function (Cooper et al., 2008;
Koutsidi et al., 2016). In addition, trait-based approaches were applied
in the monitoring of already defined MPAs. A study by Coleman et al.
(2015) comparing different types of MPAs showed that functional traits
can elucidate early conservation outcomes, while traditional multi-
metric diversity indices were not able to distinguish between the dif-
ferently treated habitats. Recently, the very promising approach to in-
tegrate traits and functional diversity into ecosystem models was
launched (Queirós et al., 2015a; see also Step 5). Such models provide a
holistic view of ecosystems and the opportunity to assess the impacts of
conservation and management as they enable us to project possible
states of future marine ecosystems.

Several legislative agreements require management schemes to di-
rectly address the functioning of ecosystems (Frid et al., 2008). The
European Marine Strategy Framework Directive (MSFD), for example,
has the objective to “enable the integrity, structure and functioning of
ecosystems to be maintained or, where appropriate, restored” (Article
13/5) (EU, 2008). Article 11 states further that coordinated monitoring
programs for the ongoing assessment of the environmental status –

accounting for the structure and functioning of marine waters – should
be established. There are already several studies from other realms
where trait approaches were successfully used in that field, mainly in
terrestrial (de Bello et al., 2010; Tilman et al., 2014), but also marine
habitats (Claudet et al., 2010; Violle et al., 2014). However, to date,
there are only few multivariate applications of biological traits to
support environmental policies in the marine realm (Beauchard et al.,
2017; Brind ’amour et al., 2016; Frid et al., 2008). In order to advise
marine management, recent studies stress the importance of trait-based
approaches for reliable indicator development to assess environmental
health or status and to detect tipping points or regime shifts (Beauchard
et al., 2017; Pedersen et al., 2017). Still, these studies also highlight
obstacles related to missing ecological understanding on trait-function
relationships and the inherent difficulties related to large scale ap-
proaches, points we have discussed in the previous paragraphs.

4. Conclusions and outlook

Trait-based approaches are valuable tools to study the effects of
rapid climate change and associated anthropogenic stressors on eco-
system structure and functions in the world’s oceans, to predict future
scenarios, and to advise decision makers on the required steps for sound
ecological management. However, polar regions and ecosystems are
unique and pose scientific challenges – divergent from those in
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temperate regions – to those aiming to apply trait-based approaches.
Most of these challenges concern basic requirements that demand
community consensus before any actual methodical approach can be
taken. These essential basics comprise trait information of polar taxa,
standardized trait terminology and methodology, and knowledge on
polar trait-function relationships. In the present paper, we reviewed the
existing challenges thoroughly and suggest a six-step roadmap to
overcome these obstacles and progress forward (Fig. 4). This roadmap
comprises the building of a strong and active international and inter-
disciplinary network (Step 1), capable of defining basic trait

terminology and best practice assessments (Step 2) that will lead to
harmonized, well-structured and easy accessible trait databases (Step 3)
and coordinated experimental approaches (Step 4). These first four
steps provide the essential baseline for trait-based and modelling ap-
proaches (Step 5) on large spatial and temporal scales, appropriate to
tackle the pressing questions related to climate change and to predict
future scenarios. This new insight then can be used to give sound advice
to decision makers and marine conservation (Step 6). Given the com-
plexity and speed of changes that polar ecosystems, and especially those
in the Arctic, are facing it might seem illusory to keep pace by following

Fig. 4. The six steps of the proposed roadmap and concrete recommendations regarding the successful use of trait-based approaches in the rapidly changing polar
ecosystems. The nestedness of the roadmap is indicated by the number of the respective working step in brackets.
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such an apparently long and nested working process. But what are the
alternatives? Isolated research projects and small-scale approaches will
not be able to answer the urgent questions related to climate change,
inherently a multifaceted and large-scale phenomenon. Nor are they
appropriate to satisfy the need of decision makers to consider, prepare
for and potentially mitigate future scenarios. Several initiatives in-
cluded in this roadmap (e.g. the WoRMS traits portal) are already on-
going, while others (e.g. the Arctic Traits Database) are in progress.
With joined forces and commitment of the international research
community to permanent exchange and coordinated initiatives all steps
of this roadmap can be tackled.

A fact we noted during the work on this paper – and that was also
highlighted in Beauchard et al. (2017) – is a clear predominance of
benthic trait studies in the marine realm, and – with exception of fish –

less focus on pelagic ecosystems (Table 2). As climate change effects are
not restricted to only one compartment, and coupling between the
pelagic and benthic realm is particularly tight and thus crucial in the
polar regions, we encourage more holistic ecosystem approaches, in-
cluding traits of multiple species across the entire marine system. There
is no technical limitation to a trait-based approach, even in broad ex-
tents when combining algae, invertebrates, fish, mammals, and birds as
long as every trait is measurable or possible to code in all organisms
(Dolédec and Statzner, 1994; Foden et al., 2013). Our literature review
showed that several traits are used across all ecosystem components
(Table 2, S1). Additionally, climate change effects do not stop at the
shorelines, terrestrial ecosystems might be included in the joint trait
efforts. The existing Register of Antarctic Marine Species (RAMS) (De
Broyer and Danis, 2011) has recently decided to broaden its scope and
to also include the non-marine species from the Antarctic Region and a
number of their relevant traits (the register will then become RAS:
Register of Antarctic Species) (WoRMS Editorial Board 2017).

As we demonstrated with many examples from current literature,
trait-based approaches provide the most insight when used in addition
to species based methods in marine community ecology. Ongoing ef-
forts to harmonize terminology and methodology, methodical im-
provements via use and promotion of sensitivity analyses, and the easy
access to trait information, best practices, manuals and scripts (see also
Step 1, 2 and 3 of our roadmap) will make these methods more easily
accessible to a broader community of users within the scientific com-
munity. Joint trait initiatives, workshops and outcomes like this per-
spectives paper will aid to their further promotion, potentially making
them standard practice in marine ecology in the future.
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